
UITK

Element

Linker
manual for developers

0.0.1



D.A. Assets

Introduction
I strongly recommend reading


this guide before using the asset.

1 This asset is created to simplify the development of projects that use UI Toolkit.

The asset is completely free and distributed under the MIT license. 

You can contribute to the project on GitHub and suggest improvements to the asset.

2 The list of supported elements is indicated in the description of the asset (in the GitHub repository, or on the Asset Store 
page).

3 If you encounter any errors while working with the asset, please write me about it at provided contacts or in the Issues 
section on GitHub. 
I typically respond quickly to messages, offer assistance on an individual basis, and address any identified errors in the 
upcoming updates.

Discord Server: https://discord.com/invite/ZsnDffV5eE


Telegram Group: -


Telegram Support: https://t.me/da_assets


Email Support: da.assets.publisher@gmail.com


Website: https://da-assets.github.io/site/

https://discord.com/invite/ZsnDffV5eE
https://t.me/da_assets
mailto:da.assets.publisher@gmail.com
https://da-assets.github.io/site/


D.A. Assets

GUID Linking

1 To set up linking by Guid, open your UXML layout, go to the Library section, 
and click on the Project tab.



In the list of elements, find the "UitkElementLinker" asset elements, and drag 
the necessary element with the "G" prefix into your layout.

2

Click on the added element to open its inspector.



In the inspector, you will see the standard fields of the element from which 
the G-element is inherited (in this case, a button), as well as a new field 
"Guid".



The value in the Guid field should be in "override" state, meaning it should 
have a white stripe next to the field.

If there is no white stripe, it means that upon reopening the UXML file, the 
guid in the field will change to a random one, and the linking will stop 
working.



To switch the field to "override" state, you can manually add any character 
to the current field value and then remove it.



After this, be sure to save your UXML file.



D.A. Assets

GUID Linking

3 After you have set up the Guid, create an empty GameObject on the scene 
and add a component that will facilitate the linking between your UITK 
element and the MonoBehaviour script.



The name of the linking script is formed as follows: 

"Uitk" + ElementName.



In our case, the script is called "UitkButton".

2 If you don’t have a UIDocument component, create an empty 
GameObject on the scene, add the UIDocument component 
to it, serialize your UXML file in it, as well as the 
PanelSettings file.

You can learn more about PanelSettings here.

3 Drag the GameObject, to which the UIDocument script has 
been added, into the "Ui Document" field of the UitkButton 
script.

4 Switch the "Linking Mode" parameter to the "Guid" state.

https://blog.unity.com/engine-platform/ui-toolkit-at-runtime-get-the-breakdown


D.A. Assets

GUID Linking

5 Now you can choose one of two possible methods to link the element via GUID.



1. Using the "Guid" field, linking with a single guid.

In this case, the element search will be conducted throughout the hierarchy of your layout.



This method is not very efficient, especially for large and complex layouts, but it is 
convenient if the upper hierarchy of your element often changes during development.



When searching for an element using the "guid" field, the parents of the sought element 
can be both G-elements and regular elements from the UnityEngine.UIElements 
namespace.



2. Using the "Guids" field, linking with a hierarchy of the element.

That is, the GUIDs of all the parents of your element will be used to search for the element.

In this case, the element search will only be conducted along one branch of the hierarchy, 
ignoring other parts of the hierarchy where your element is not present.



This is the most efficient way to find a element, but at the same time, if you change the 
parent of your element, or any other parent in the upper hierarchy of your element - you will 
need to update the "Guids" field for your element, otherwise it will not be found.



As a suggestion, use linking via the "Guid" field during development/prototyping, and 
switch to "Guids" before release when you will no longer be making changes to your layout, 
to improve the performance of your game/app.

In such a case, all the elements of the hierarchy branch where your element is located must 
be G-elements.

1
2

6 To link your element using the "Guid" field, following the first method, 
insert the guid of your element into the "Guid" field.



Keep in mind that if there are more than 0 elements in the "Guids" array, 
linking through the "Guid" field will not work, as the asset will assume that 
you are linking through the "Guids" field.



D.A. Assets

GUID Linking

7 To link your element through the "Guids" field, following the second method: 
1. Open your UXML layout 
2. Select your element by clicking it once with the left mouse button

3. In the context menu at the top of the Unity window (not in the UI Builder window), click on 

"Tools > Assets > Copy element guid hierarchy" item.

4. If the hierarchy was copied successfully, you will see a message in the console:

5. If you see an error when trying to copy a hierarchy, please notify the asset developer.

6. Now you have configured element linking using the "Guids" field.



D.A. Assets

Name Linking

1 Now let's consider linking by Name and/or Index.

Linking by name works with both regular UI Toolkit elements and G-elements.



Open your UXML layout, go to the Library section, and click on the Standard tab.

Drag any of standard elements onto your layout in the UI Builder window.

2

Click on the added element to open its inspector.



Then assign a name to it and copy this name to the clipboard.



After this, be sure to save your UXML file.



D.A. Assets

Name Linking

3 Open your UitkButton component, which is on the GameObject in the scene, in the 
Inspector, and switch the "Linking Mode" to "Name."



1. If you want to configure the binding by name only, enter the name of your element 
in the "Name" field. 


In this case, the search for the element will be conducted across all branches of your 
layout's hierarchy, and linking will be established with the first element whose name 
matches the value in the "Name" field.



This approach uses the standard "Query" method to search for an element in the 
hierarchy, and is not recommended for use because if your layout contains repeated 
names, there is a high risk of linking with the wrong element.



Keep in mind that if there are more than 0 elements in the "Names" array, linking 
through the "Name" field will not work, as the asset will assume that you are linking 
through the "Names" field.

1
2

https://docs.unity3d.com/Manual/UIE-UQuery.html


D.A. Assets

Name Linking

2. The problem described above can be solved by linking through the "Names" field.

Add the first element to the "Names" array using the "+" button in the Inspector.



You will see two fields in the resulting array element: "Index" and "Name".

"Index" is the ordinal number of your element in the hierarchy within its parent relative to other elements.

"Name" is the name of your element.



By default, the Index field has a value of "-1", which means that index checking at this level of hierarchy is not used, 
and the object will be searched only by "Name".



However, if an "Index" is specified, the asset will search for your element by index, not by "Name", even if you have 
specified a "Name".



To copy the hierarchy of Names and/or indexes, use the context menu items:

- fill the hierarchy with "Name" field only

- fill the hierarchy with "Index" field only

- fill the hierarchy with both field “Index” and field "Name"



D.A. Assets

Name Linking

3. Below is an example of using the "Names" linking field, where I used the copy function for "Index + name". 
However, for elements that do not have duplicates at their hierarchy level, I changed the indexes to "-1" so they 
would not be considered during the search.

For the element with the repeated name "button-icon-_-default", index "1" is specified - in this case, we want to get 
the second button in the hierarchy.

4. Disadvantages of using the Names field for binding: 



a) The indexes of your components may change during development or at runtime. 

b) The names of your components may change during development.



I recommend using the "Guid" or "Guids" field for linking to avoid the problems described above.



D.A. Assets

Access to

the element

1 After you have set up the linking by your chosen method, you can 
simply serialize your UitkButton in your MonoBehaviour script.

2 To access the UnityEngine.UIElements.Button element, to which you've configured the linking,

you can refer to the properties of the UitkButton component: ”Е”, or "Element".



Example code:

using DA_Assets.UEL;

using UnityEngine;



public class MyScript : MonoBehaviour

{

    [SerializeField] UitkButton addPhotoBtn;

    private void Start()

    {

        //Access to your UITK element.

        UnityEngine.UIElements.Button btn = addPhotoBtn.E;

        Debug.Log(btn.name);

    }

    //You don't need to use 'RegisterCallback<ClickEvent>'.

    public void AddPhoto_OnClick()

    {

        Debug.Log($"{addPhotoBtn.E.name} clicked!");

    }

}


